Pseudo-randomness, Hash functions and Min-Hash for document comparison

Yoav Freund

This lecture is based on:

- “Mining Massive Datasets” by Jure Leskovec, Anand Rajaraman and Jeffrey D. Ullman
- Description is in section 11.6 in the lecture notes.
Random vs. pseudo-random numbers

1. **Random:**

 ![Random outcomes with thumbs up and down]

2. **Pseudo-Random:**
   ```python
   In [1]: import random
   
   In [8]: random.seed(a=1550)
   [random.randint(0,1) for i in range(10)]
   Out[8]: [1, 1, 0, 0, 0, 1, 0, 0, 1, 0]
   
   In [7]: random.seed(a=22)
   [random.randint(0,1) for i in range(10)]
   Out[7]: [1, 0, 0, 1, 0, 0, 1, 0, 1, 0]
   
   In [9]: random.seed(a=1550)
   [random.randint(0,1) for i in range(10)]
   Out[9]: [1, 1, 0, 0, 0, 1, 0, 0, 1, 0]
   ```
Comparing Random with Pseudo Random

Compare two sources: random vs. pseudo-random. Suppose the seed consists of k bits, and the length of the generated binary sequence $n \gg k$.

1. A true coin flip assigns equal probability to each of the 2^n binary sequences.

2. The pseudo-random number generator assigns non-zero probability to at most 2^k sequences.

3. There exists an algorithm that can distinguish between the two distributions.

4. There is no efficient (poly-time in n) algorithm that can distinguish between the sources.
Random Hash Function

- The fact that the sequence is a function of the seed is a deficiency of the pseudo random generator.
- However the same fact is a *feature* when using PRNG’s to define Hash Functions
- A hash function h_{seed} maps from some large domain X to a small set $1, 2, \ldots, n$
- If $seed$ is chosen uniformly at random, we can $h_{seed}(x_1), h_{seed}(x_2) \ldots, h_{seed}(x_n)$ are (pseudo) IID draws from the uniform distribution over $1, 2, \ldots, n$.
- If $R(seed)$ is a PRNG then $h_{seed}(x) = R(seed + x)$ is a random hash function.
Random Hash Function

- The fact that the sequence is a function of the seed is a deficiency of the pseudo random generator.
- However the same fact is a *feature* when using PRNG’s to define **Hash Functions**
- A hash function h_{seed} maps from some large domain X to a small set $1, 2, \ldots, n$
- If $seed$ is chosen uniformly at random, we can $h_{seed}(x_1), h_{seed}(x_2) \ldots, h_{seed}(x_n)$ are (pseudo) IID draws from the uniform distribution over $1, 2, \ldots, n$.
- If $R(seed)$ is a PRNG then $h_{seed}(x) = R(seed + x)$ is a random hash function.
• Suppose we are writing a compiler and we need to keep the memory address for each variable name. We typically use a Hash Table.

• Hash Tables are an implementation of map data structures that allows insertion, deletion and retrieval in $O(1)$ time.

• Suppose table has n slots.

• Given $(key, value)$ pair. Place pair in slot $h_{seed}(key)$.

• Unless collision: there is already an item in that slot.

• Pick at another randomly picked slot, repeat until empty slot found.

• A random hash function will guarantee that the probability of a collision, if m slots are occupied, is m/n.

• Therefore, if $m/n < 1/2$ then the expected number of collisions before we find an empty slot is 1.

• $E(#\text{collisions}) = \frac{1}{2} 0 + \frac{1}{2} (1 + E(#\text{collisions})) \Rightarrow E(#\text{collisions}) = 1$
Finding Similar Items

Based on chapter 3 of the book “Mining Massive Datasets” by Jure Leskovec, Anand Rajaraman and Jeffrey D. Ullman

Suppose we receive a stream of documents.

We want to find sets of documents that are very similar

Reasons: Plagiarism, Mirror web sites, articles with a common source.
Measuring the distance between sets

1. Suppose we consider the set of words in a document. Ignoring order and number of occurrences.
2. We will soon extend this assumption.
3. If two documents define two sets S, T, how do we measure the similarity between the two sets?
4. Jaccard similarity: $\frac{|S \cap T|}{|S \cup T|}$

Figure 3.1: Two sets with Jaccard similarity 3/8
Let X be a finite (but large) set

Let $N = \{1, 2, \ldots, n\}$ be a (very large) set of numbers.

A Hash-Function $h : X \rightarrow N$ is a function that “can be seen as” a mapping from each element of X to a an independently and uniformly chosen random element of N.
Min-Hash

1. Choose a random hash function h_i
2. Given a set of elements S in the domain X
3. $\text{min-}H_i(S) = \min_{s \in S} h_i(s)$
4. A min-hash signature for a document is the vector of numbers $\langle \text{min-}H_1(S), \text{min-}H_2(S), \ldots, \text{min-}H_k(S) \rangle$
5. Signature also called a “sketch”: Any length document is represented by k numbers.
6. A lot of information is lost, but enough is retained to approximate the Jaccard similarity.
Visualizing Min-Hash

- We can represent the set of words in each document as a matrix.
- Rows a, b, c, \ldots correspond to words.
- Columns S_1, S_2, \ldots correspond to documents.
- A “1” in row b, column S_i means that document S_i contains the word b.
- Hashing corresponds to randomly permuting the rows.
- Min-hashing a document corresponds to identifying the first “1” starting from the top of the column.

<table>
<thead>
<tr>
<th>Element</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Understanding Min-Hash

- For any set S of size $|S|$, the probability that any particular element $s \in S$ is the min-hash is $1/|S|$
- Fix two documents S_i, S_j (columns) and partition the rows that contain at least a single “1” in those columns
- Denote by X rows that contain 1,1 (both documents contain the word.)
- Denote by Y rows that contain 1,0 or 0,1 (only one document contains the word)
- Permuting the rows does not change which rows are X and which are Y
- The min-hash of S_i, S_j agree if and only if first row that is not 0,0 is an X
- The probability that the min-hash of S_i, S_j agree is exactly $\frac{\#X}{\#X + \#Y}$ which is equal to $JS(S_i, S_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}$
We can use min-hash to estimate Jaccard similarity (JS):

\[
\frac{|S_i \cap S_j|}{|S_i \cup S_j|}
\]

For each min hash function \(MH_i \) we have that

\[
P_i [\text{min-}H_i(S) = \text{min-}H_i(T)] = \frac{|S \cap T|}{|S \cup T|}
\]

A single comparison yields only true (1) or false (0)

Taking the average of \(k \) independent hash functions we can get an accurate estimate.
How many hash functions do we need? (1)

1. From a statistics point of view we have k independent binary random variables:

$$X_i = \begin{cases}
1 & \text{if } \min-H_i(S) = \min-H_i(T) \\
0 & \text{otherwise}
\end{cases}$$

2. We seek the expected value: $p \doteq E(X_i) = \frac{|S \cap T|}{|S \cup T|}$

3. We have to overcome the large std: $\sigma(X_i) = \sqrt{p(1-p)}$

4. Averaging gives a random variable with the same expected value but a smaller variance.

$$Y = \frac{1}{k} \sum_{i=1}^{k} X_i; \quad E(Y) = p \quad \sigma(Y) = \sqrt{\frac{p(1-p)}{k}}$$

5. $\sigma(Y) \leq \sqrt{\frac{1}{2}(1-\frac{1}{2})(1/k)} = \frac{1}{2\sqrt{k}}$
Using a z-Scores to calculate the minimal number of hash functions.

1. Suppose we want our estimate of JS to be within ± 0.05 of the Jaccard distance with probability at least 95%.

2. The fraction of min-hashes matches is the average of k independent binary random variables.

3. Let's assume k is large enough so that the central limit theorem holds.

4. We want a confidence of 95% that the estimate is within ± 0.05 of the true value. In other words, we want

 $$2\sigma(Y) \leq 0.05$$

5. Using the bound

 $$\sigma(Y) \leq \frac{1}{2\sqrt{k}}$$

 we find that it is enough if $\frac{1}{k} \leq 0.05$ or if $k \geq 20$.
Introducing Order

1. So far, we represented each document by the set of words it contains.
2. This removes the order in which the words appear: “Sampras beat Nadal” is the same as “Nadal beat Sampras.”
3. We can add order information to the set representation using Shingles.
Consider the sentence: ”the little dog loughed to see such craft“

Word set representation: \{ “the”, ”little”, ”dog”,
“loughed”, ”to”, ”see”, ”such”, ”craft” \}

2-shingle representation: \{ “the little”, ”little dog”, “dog
loughed”, ”loughed to”, ”to see”, ”see such”, ”such craft” \}

3-shingle representation: \{ “the little dog”, ”little dog loughed” ,...

And so on

The number of shingles of length \(k \) from a document of length \(n \) is?

\(n + 1 − k \) - largest for single words!

On the other hand, there is a much larger number of different items.

\(k \) too small - documents judged similar too often.

\(k \) too large - documents judged dissimilar too often