description

These pages are a summary of the formulas used in
CSE103. You can use this as a basis for your hand-
written “cheat-sheet”. However, you cannot bring a
printout of these pages to the final exam.

Combinatorics
1. The number of different tuples of length k over
an alphabet of size n: n*
2. The number of ways to order n different objects
is n!
3. The number of sequences (i.e. order is impor-

. For any two real

tant) of length k that can be created from a set
of n different elements (nﬁ!k)!

. Binomial coefficients: The number of subsets(i.e.

order is not important) of size k in a set of size
. (n\ __ !

n (p) = k!(r?fk)l

numbers (a + b)" =

>y (Mab" . To get the binomial distribu-
tion let a =p, b=1—p.

. Suppose we have n; objects of type 1, ns ob-

jects of type 2, etc up to ng so the total num-
ber of objects is n = n1 + ... + ng. The num-
ber of different ways to order these n objects is

( n ) _ n!
N1,M2 ey nilng!l--ng!

. Bounds on the binomial coefficient: (%)k <

(m) < (z)"

Discrete probability

1.

The union bound: for any events Ay, As, ..., Ag;
P(AU...UA,) <Y P(A)

Summation rule: If Aj, As,..., Ay are a parti-
tion of the sample space €2, i.e. A1U...UA; = Q
and A;NA; =0 if i # j. Then Y2F | P(4;) = 1.

If A and B are arbitrary events P(A U B) =
P(A)+ P(B)— P(ANB)

Conditional probability: P(A|B) = P(A N
B)/P(B).

Independence: A, B are independent events
it P(AnN B) = P(A)P(B), equivalently, if

P(A|B) = P(A).

Random variables,
Variance

6. Bayes Rule: P(A|B) = ZBLALMA)

P(B)

7. Conditional summation rule: If A is an event

and B; is a partition of the sample space then
P(A) = ZiP(A NB;) = ZiP(A|Bi)P(Bi)

Series
e Arithmetic sum: 1+2+3+~~~+n:%
e Geometric Series (0 < r < 1):
_ T S 1—1p 4 (1 —7)2
1=0 i=1 =1

e If we repeatedly flip a coin whose probability of

landing heads is p the expected number of flips
until the first heads is:

. i D ) ; p 1—p
Z(l—p)z 1p R Zz(l_p)z R =
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e Harmonic Sums:

n o0
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i=1 i=1

1
Z — is undefined
ie{-,—2,-1,1,2,---}

oo 1 2

T
27 %

=1

expectation and

1. A random variable is a function from the in-

stance space €) to the real line.

. Two random variables X,Y whose ranges are

finite sets A, B are independent if and only if
P(X =aandY =b) = P(X =a)P(Y =) for
all a € A and b € B. More on indpendent rv’s
in the next section.

. The expected value (or mean p) of a random

variable X is defined to be

p=EX)=) 2P(X =z)

properties of the expected value (X,Y are ran-
dom variables).




(a) If a,b are constants: Independence of RVs, Covariance, cor-
E(aX +b) = aB(X) +b. relation and anti-correlation

(b) Linearity of expectations:

e Two random variables X,Y are independent if
E(X+Y)=EX)+E(Y)

and only if for any constants a, b:
(¢) Expectation of a product:

E(XY) = E(X)E(Y) if X and Y are inde- P(X<aAY <h=PX <a)P(Y D)

pendent. If the random variables are integer valued then
(d) Linearity of expectations: they are independent if and only if dor any inte-
EXi+--+X,)=E(X1)+ -+ EX,) gers 4, J
() f Xi,...,X, are independent then P(X=iAY =j)=P(X =i)P(Y =j)

var(Xy +--- X)) = var(Xy) + - - -+ var(X,,)

. . The C i ft d iables X,Y i
4. The variance and standard deviation * ¢ ovaiaice of two fandom variablies s

Cou(X,)Y) = E((X-EX))(Y-E®Y))

o2 = var (X) = E(X-E(X))?) = BE(X?)-E(X)? — E(XY) - E(X)E(Y)

o = stddev(X) = y/var(X) If X,Y are independent then E(XY) =
) E(X)E(Y) and therefor the covariance is zero.
e Variance of a sum: var (X +Y) = var (X)+ However the other direction is not true: zero co-

var (Y) if X and Y are independent. variance does not imply independence.

e For any constants a,b: var(aX + b) =

a?var(X) (adding a constant to a RV has o If XY are integer valued random variables

no effect on its variance). Cov(X,Y)=E(XY) - EX)EY) =
e The standard deviation of n independent Z” JP(X =iANY =j)—[>,iP(X = Z)HZJ JP(Y = j)]
identically distributed (IID) random vari-
ables: e The correlation coefficient is a normalized ver-
Lo var (X)) sion of the covariance:
var (n g)ﬁ) = cor(X,Y) = Cov(X,Y)
var (X)) var ()

and therefor The correlation coefficient varies between -1 and

n 1. cor(X,Y) = 1 if and only if there are con-
stddev (1 ZX1> = stddev(X;) stants ¢ > 1,b such that P(aX +b =Y) =
et Vin 1. Similarly cor(X,Y) = —1 if and only if
P(—aX +b=Y) = 1. If the correlation (and
5. Markov Inequality: if X is a non-negative ran- the covariance) are positive, we say that X and
dom variable and a > 0 is some constant value, Y are correlated, if it is negative, we say that X
then P(X >a) < @ and Y are anti-correlated and if it is zero we say
that X and Y are uncorrelated (which does not

6. Chebyshev’s inequality: If p is the mean and o imply that they are independent.)

is the standard deviation of the rv X

Distributions over the real line
P(IX =l > ko) < —
k e Suppose X is a random variable defined over the

whole real line from —oco to oo. The probabil-

7. Suppose you toss a coin with bias p and code the ity distribution for such a random variable can
ou‘Fcome as either X = 1 (with prob. p) or X = 0 always be represented by the Cumulative Distri-
(with prob. 1—p). We say that X has a Bernoulli bution Function (CDF) F(a) = P(z < a). The

distribution. E(X) = p and var(X) = p(1 — p). CDF is monotone non-decreasing.



e The probability of a segment can be computed
as Pla< X <b)=F(b) — F(a).

e The uniform distribution on the segment [a,b]

corresponds to the CDF that is 0 for z < a, 7=

for a < x <band 1 for z > b. We denote such
a distribution by U(a,b). The mean of U(a,b) is

atb i is L(h_ )2
7. The variance is 15 (b — a)*.

e If the derivative of the CDF is defined every-
where then we call the derivative the Probabil-
ity Density Function (PDF) f(z). The integral
of the PDF is the CDF: F(a) = [*_ f(z)dx.

o If the density function is defined at a the proba-
bility of the event {a} is zero. Conversely, if the
probability of a single point is non-zero then the
the PDF is not defined at that point and we say
that the distribution contains a point mass at a,
denoted PM (a)

e If P, P, are two distributions, and p a constant
between 0 and 1, then pP; + (1 — p) Pz is also a
well-defined distribution Ps;. We say that Ps is a
mixture of P1 and P2.

Poisson Distribution

The poisson distribution describes the number of
events in a unit time when the events are distributed
uniformly in (continuous, non-discretized) time.

e The number of events per unit time is

)\k
_ _ A

e The mean of the Poisson distribution is E(X) =
A. The variance is Var(X) = .

e The Poisson distribution is the limit of the bino-
mial distribution where n — oo and p = A/n:

)\ (A A" Ak
m () 27

e When events are distributed uniformly in time
and the expected number of events per unit time
is A, the time between consecutive events d =
ti+1 — t; is distributed according to the density
f(d) = Aexp(—Ad) and the CDF is:

Pld<s)=1—¢e

e The mean of the exponential distribution is %
and the variance is %

Statistical tests

e Statistical testing is a methodology for quanti-

fying the the significance of conclusions made
based on observations. The null hypothesis cor-
responds to the skeptical opinion stating that the
observation is explained well by the null distri-
bution Hy. The alternative hypothesis H; repre-
sents the new explanation that the experiment is
intended to confirm. For example, when testing
a new drug, the Null hypothesis states that the
drug has no effect and the alternative hypothesis
states that it does have a beneficial effect.

The statistical test is a function that takes as
input the observations and a significance values
«a and outputs either “Reject Null Hypothesis”
or “Fail”.

The significance level or a-value of a statistical
test is (an upper bound on) the probability that
the test rejects the null hypothesis when the data
if generated according to the null hypothesis, a
is not a random variable. It is set to a constant
value before the observation data is given..

The p-value of a test is a random variable, it
is the minimal value of a that would result in
rejecting the null hypothesis. In other words,
the test rejects the null hypothesis if p < a.

A type I error is rejecting the null hypothesis
when it is correct. The probability of a type I
error is bounded by the chosen value of a.. A type
IT error is failing to reject the null hypothesis
when the the alternative hypothesis is correct.
Usually, we have no control over type II errors.
Increasing « increases the probability of type I
errors and decreases the probability of type II
errors.

Tests based on Normality

e Central Limit Theorem If X, X5, ... are in-

dependent, identically distributed random vari-
ables with mean g and variance o2 and

_ 2 Xi —np

ovn
Then, as n — oo the CDF of Y,, converges to
the CDF of the standard normal distribution
N(0,1), which has the density distribution:

Yy

1
679:2/2




e the Normal Approximation: Given

a random variable Y whose distribution
is normal AN(u,0?) we can calcuate the
probability P(Y > a) = PY > a) (or
PY < a) = P(Y < a)) for any value of a.
The common way of calculating P(Y > a)
(or without a computer is transforming the
threshold a to a z-score and then using a table
for N(0,1). The formula for calculating z is
z = £ And the P(Y > a) = P(X > z) where
the distribution of X is A/(0,1).

A few standard definitions: Q(z) = P(X > z),
®(z) = P(X < z), @ *(p) is the inverse function
to Q. In other words: Q(Q~1(p)) = p.

o few useful values:

Q) ~ 15%, Q(2) ~2.5%,

Q(3) = 0.15%, Q(4) ~ 0.003%

Randomized Algorithms
e A Las Vegas Algorithm: always produces the

correct output but the time it takes to produce
this output can vary. Let u be the expected run-
ning time.

A Monte Carlo Algorithm : always com-
pletes within the same amount of time. How-
ever, the output is incorrect with probability
O0<g=1-p<1.

Transforming Las Vegas to Monte Carlo:
We run a timer for time 7T in parallel with the
algorithm. If the algorithm completes before T,
we output the output of the algorithm. If the
timer’s timer reaches time 7', we abort the al-
gorithm and output an incorrect output. Using
Markov’s Inequality we get that the probability
of failure is ¢ < pu/T

Transforming Monte Carlo to Las Vegas:
We assume that we have an efficient way to check
whether the output of the algorithm is correct.
We repeatedly tune the Monte-Carlo algorithm
followed by the checker algorithm until we find
a correct output. Suppose the time for one iter-
ation is T', and the probability of success in each
iteration is p, then the expected running time
until completion is T'/p.

e Hashing n elements into a table of size n. The

location of each element is distributed uniformly
over the n bins, independent of the location of
the other elements. The occupancy of a bin is the
number of elements that it holds. The probabil-
ity that “the mazimal occupancy (over all bins)
is larger than log(n)” goes to zero as n goes to
infinity.

The power of two: One very effective method
for reducing the maximal occupancy is to use
two hash functions instead of one. To add a
new element to the table both locations are
checked and the new element is added to the
location with smaller occupancy. The probabil-
ity that “the maximal occupancy is larger than
loglog(n)” goes to zero as n goes to infinity.

Min-Hash: Here we are concerned with com-
paring document. We view each document as
a set of words. The Jaccard similarity between
two documents A, B, is defined as

ANB
S4B = 1up

Where A denotes the set words in the document
A (without repetitions) and |A| is the number of
elements in that set.

The min-hash method associates with each doc-
ument a short “signature” so that the similar-
ity between any two documents can be approxi-
mated efficiently from their signatures alone.

The min-hash signature consists of k integers
from a very large range (much larger that the
set of possible words). Each of the k¥ numbers
is computed by using an independent hash func-
tion h;. Each word w is mapped to it’s hash
value h;(w). A document is then mapped to the
minimum of the hash values of it’s words. This
gives the ith min-hash value for the document.

The probability that the ith min-hash values of
two documents A, B match is equal to the sim-
ilarity S(A, B). Thus the random variables X
which are 1 for match, 0 for no-match, are I1ID
binary RV with expected value S(A4, B). Using
this fact we can compute the minimal value of k
required to reach a specified level of accuracy in
estimating S(A, B).

Bloom filters: A method for determining
whether a given item has been observed in the



past. The method consists of a binary vector T
of length m which is initialized to all zeros, and
k hash functions that map items into the range
1,...,m. An item z is mapped to the k values
hi(x),...,hg(z). The corresponding entries in T
are checked, if all of these entries are 1 the item
is declared to have been observed in the past,
then all of the entries are set to 1.

Bloom filters do not make false negative mistakes
- declaring an item to be new when it is not.

Suppose we have already entered n elements into
the filter, The probability of a false positive
(declaring the n + 1th item as not new when in

fact it is new) is p &~ (1 — e*’m/m)k_

The optimal choice of k for given values of m,n
isk=7"1In2

If we want to have probability at most p of a false
positive, we are given the value of n and use the
optimal choice for k then the minimal table size
we need is: m > (nIn(1/p))/(In2)?



