
description

These pages are a summary of the formulas used in
CSE103. You can use this as a basis for your hand-
written “cheat-sheet”. However, you cannot bring a
printout of these pages to the final exam.

Combinatorics

1. The number of different tuples of length k over
an alphabet of size n: nk

2. The number of ways to order n different objects
is n!

3. The number of sequences (i.e. order is impor-
tant) of length k that can be created from a set
of n different elements n!

(n−k)!

4. Binomial coefficients: The number of subsets(i.e.
order is not important) of size k in a set of size
n:
(
n
k

)
= n!

k!(n−k)!

5. For any two real numbers (a + b)n =∑n
i=0

(
n
i

)
aibn−i. To get the binomial distribu-

tion let a = p, b = 1− p.

6. Suppose we have n1 objects of type 1, n2 ob-
jects of type 2, etc up to nk so the total num-
ber of objects is n = n1 + . . . + nk. The num-
ber of different ways to order these n objects is(

n
n1,n2,...,nk

)
= n!

n1!n2!···nk!

7. Bounds on the binomial coefficient:
(
n
k

)k ≤(
n
k

)
≤
(
ne
k

)k
Discrete probability

1. The union bound: for any events A1, A2, . . . , Ak;
P (A1 ∪ . . . ∪Ak) ≤

∑k
i=1 P (Ai)

2. Summation rule: If A1, A2, . . . , Ak are a parti-
tion of the sample space Ω, i.e. A1∪ . . .∪Ak = Ω
and Ai ∩Aj = ∅ if i 6= j. Then

∑k
i=1 P (Ai) = 1.

3. If A and B are arbitrary events P (A ∪ B) =
P (A) + P (B)− P (A ∩B)

4. Conditional probability: P (A|B) = P (A ∩
B)/P (B).

5. Independence: A,B are independent events
if P (A ∩ B) = P (A)P (B), equivalently, if
P (A|B) = P (A).

6. Bayes Rule: P (A|B) = P (B|A)P (A)
P (B)

7. Conditional summation rule: If A is an event
and Bi is a partition of the sample space then
P (A) =

∑
i P (A ∩Bi) =

∑
i P (A|Bi)P (Bi)

Series

• Arithmetic sum: 1 + 2 + 3 + · · ·+ n = n(n+1)
2

• Geometric Series (0 < r < 1):

∞∑
i=0

ri =
1

1− r
;

∞∑
i=1

ri =
r

1− r
,

∞∑
i=1

iri =
r

(1− r)2

• If we repeatedly flip a coin whose probability of
landing heads is p the expected number of flips
until the first heads is:

∞∑
i=1

i(1−p)i−1p =
p

1− p

∞∑
i=1

i(1−p)i =
p

1− p
1− p
p2

=
1

p

• Harmonic Sums:

n∑
i=1

1/i ≈ lnn,

∞∑
i=1

1/i =∞

∑
i∈{···,−2,−1,1,2,···}

1

i
is undefined

∞∑
i=1

1

i2
=
π2
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Random variables, expectation and
Variance

1. A random variable is a function from the in-
stance space Ω to the real line.

2. Two random variables X,Y whose ranges are
finite sets A,B are independent if and only if
P (X = a and Y = b) = P (X = a)P (Y = b) for
all a ∈ A and b ∈ B. More on indpendent rv’s
in the next section.

3. The expected value (or mean µ) of a random
variable X is defined to be

µ
.
= E(X)

.
=
∑
z

zP (X = z)

properties of the expected value (X,Y are ran-
dom variables).



(a) If a, b are constants:
E(aX + b) = aE(X) + b.

(b) Linearity of expectations:
E(X + Y ) = E(X) + E(Y )

(c) Expectation of a product:
E(XY ) = E(X)E(Y ) if X and Y are inde-
pendent.

(d) Linearity of expectations:
E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn)

(e) If X1, . . . , Xn are independent then
var(X1 + · · ·Xn) = var(X1) + · · ·+ var(Xn)

4. The variance and standard deviation

σ2 .
= var (X)

.
= E((X−E(X))2) = E(X2)−E(X)2

σ = stddev(X) =
√

var(X)

• Variance of a sum: var (X + Y ) = var (X)+
var (Y ) if X and Y are independent.

• For any constants a, b: var(aX + b) =
a2var(X) (adding a constant to a RV has
no effect on its variance).

• The standard deviation of n independent
identically distributed (IID) random vari-
ables:

var

(
1

n

n∑
i=1

Xi

)
=

var (Xi)

n

and therefor

stddev

(
1

n

n∑
i=1

Xi

)
=

stddev(Xi)√
n

5. Markov Inequality: if X is a non-negative ran-
dom variable and a > 0 is some constant value,

then P (X ≥ a) ≤ E(X)
a

6. Chebyshev’s inequality: If µ is the mean and σ
is the standard deviation of the rv X

P (|X − µ| > kσ) ≤ 1

k2

7. Suppose you toss a coin with bias p and code the
outcome as either X = 1 (with prob. p) or X = 0
(with prob. 1−p). We say thatX has a Bernoulli
distribution. E(X) = p and var(X) = p(1− p).

Independence of RVs, Covariance, cor-
relation and anti-correlation

• Two random variables X,Y are independent if
and only if for any constants a, b:

P (X ≤ a ∧ Y ≤ b) = P (X ≤ a)P (Y ≤ b)

If the random variables are integer valued then
they are independent if and only if dor any inte-
gers i, j

P (X = i ∧ Y = j) = P (X = i)P (Y = j)

• The Covariance of two random variables X,Y is

Cov(X,Y ) = E ((X − E(X))(Y − E(Y )))

= E(XY )− E(X)E(Y )

If X,Y are independent then E(XY ) =
E(X)E(Y ) and therefor the covariance is zero.
However the other direction is not true: zero co-
variance does not imply independence.

• If X,Y are integer valued random variables

Cov(X,Y ) = E(XY )− E(X)E(Y ) =∑
i,j ijP (X = i ∧ Y = j)− [

∑
i iP (X = i)][

∑
j jP (Y = j)]

• The correlation coefficient is a normalized ver-
sion of the covariance:

cor(X,Y ) =
Cov(X,Y )√

var (X) var (Y )

The correlation coefficient varies between -1 and
1. cor(X,Y ) = 1 if and only if there are con-
stants a > 1, b such that P (aX + b = Y ) =
1. Similarly cor(X,Y ) = −1 if and only if
P (−aX + b = Y ) = 1. If the correlation (and
the covariance) are positive, we say that X and
Y are correlated, if it is negative, we say that X
and Y are anti-correlated and if it is zero we say
that X and Y are uncorrelated (which does not
imply that they are independent.)

Distributions over the real line

• Suppose X is a random variable defined over the
whole real line from −∞ to ∞. The probabil-
ity distribution for such a random variable can
always be represented by the Cumulative Distri-
bution Function (CDF) F (a)

.
= P (x ≤ a). The

CDF is monotone non-decreasing.



• The probability of a segment can be computed
as P (a < X ≤ b) = F (b)− F (a).

• The uniform distribution on the segment [a, b]
corresponds to the CDF that is 0 for x ≤ a, x−ab−a
for a ≤ x ≤ b and 1 for x > b. We denote such
a distribution by U(a, b). The mean of U(a, b) is
a+b
2 . The variance is 1

12 (b− a)2.

• If the derivative of the CDF is defined every-
where then we call the derivative the Probabil-
ity Density Function (PDF) f(x). The integral
of the PDF is the CDF: F (a) =

∫ a
−∞ f(x)dx.

• If the density function is defined at a the proba-
bility of the event {a} is zero. Conversely, if the
probability of a single point is non-zero then the
the PDF is not defined at that point and we say
that the distribution contains a point mass at a,
denoted PM(a)

• If P1, P2 are two distributions, and p a constant
between 0 and 1, then pP1 + (1 − p)P2 is also a
well-defined distribution P3. We say that P3 is a
mixture of P1 and P2.

Poisson Distribution

The poisson distribution describes the number of
events in a unit time when the events are distributed
uniformly in (continuous, non-discretized) time.

• The number of events per unit time is

P (X = k) = e−λ
λk

k!

• The mean of the Poisson distribution is E(X) =
λ. The variance is V ar(X) = λ.

• The Poisson distribution is the limit of the bino-
mial distribution where n→∞ and p = λ/n:

lim
n→∞

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
= e−λ

λk

k!

• When events are distributed uniformly in time
and the expected number of events per unit time
is λ, the time between consecutive events d =
ti+1 − ti is distributed according to the density
f(d) = λ exp(−λd) and the CDF is:

P (d ≤ s) = 1− e−λs

• The mean of the exponential distribution is 1
λ

and the variance is 1
λ2 .

Statistical tests

• Statistical testing is a methodology for quanti-
fying the the significance of conclusions made
based on observations. The null hypothesis cor-
responds to the skeptical opinion stating that the
observation is explained well by the null distri-
bution H0. The alternative hypothesis H1 repre-
sents the new explanation that the experiment is
intended to confirm. For example, when testing
a new drug, the Null hypothesis states that the
drug has no effect and the alternative hypothesis
states that it does have a beneficial effect.

• The statistical test is a function that takes as
input the observations and a significance values
α and outputs either “Reject Null Hypothesis”
or “Fail”.

• The significance level or α-value of a statistical
test is (an upper bound on) the probability that
the test rejects the null hypothesis when the data
if generated according to the null hypothesis, α
is not a random variable. It is set to a constant
value before the observation data is given..

• The p-value of a test is a random variable, it
is the minimal value of α that would result in
rejecting the null hypothesis. In other words,
the test rejects the null hypothesis if p ≤ α.

• A type I error is rejecting the null hypothesis
when it is correct. The probability of a type I
error is bounded by the chosen value of α. A type
II error is failing to reject the null hypothesis
when the the alternative hypothesis is correct.
Usually, we have no control over type II errors.
Increasing α increases the probability of type I
errors and decreases the probability of type II
errors.

Tests based on Normality

• Central Limit Theorem If X1, X2, ... are in-
dependent, identically distributed random vari-
ables with mean µ and variance σ2 and

Yn =

∑n
i=1Xi − nµ
σ
√
n

Then, as n → ∞ the CDF of Yn converges to
the CDF of the standard normal distribution
N (0, 1), which has the density distribution:

p(x) =
1√
2π
e−x

2/2



• the Normal Approximation: Given
a random variable Y whose distribution
is normal N (µ, σ2) we can calcuate the
probability P (Y > a) = P (Y ≥ a) (or
P (Y < a) = P (Y ≤ a)) for any value of a.
The common way of calculating P (Y > a)
(or without a computer is transforming the
threshold a to a z-score and then using a table
for N (0, 1). The formula for calculating z is
z = a−µ

σ . And the P (Y > a) = P (X > z) where
the distribution of X is N (0, 1).

• A few standard definitions: Q(z) = P (X > z),
Φ(z) = P (X < z), Q−1(p) is the inverse function
to Q. In other words: Q(Q−1(p)) = p.

• few useful values:

Q(1) ≈ 15%, Q(2) ≈ 2.5%,

Q(3) ≈ 0.15%, Q(4) ≈ 0.003%

Randomized Algorithms

• A Las Vegas Algorithm: always produces the
correct output but the time it takes to produce
this output can vary. Let µ be the expected run-
ning time.

• A Monte Carlo Algorithm : always com-
pletes within the same amount of time. How-
ever, the output is incorrect with probability
0 < q = 1− p < 1.

• Transforming Las Vegas to Monte Carlo:
We run a timer for time T in parallel with the
algorithm. If the algorithm completes before T ,
we output the output of the algorithm. If the
timer’s timer reaches time T , we abort the al-
gorithm and output an incorrect output. Using
Markov’s Inequality we get that the probability
of failure is q ≤ µ/T

• Transforming Monte Carlo to Las Vegas:
We assume that we have an efficient way to check
whether the output of the algorithm is correct.
We repeatedly tune the Monte-Carlo algorithm
followed by the checker algorithm until we find
a correct output. Suppose the time for one iter-
ation is T , and the probability of success in each
iteration is p, then the expected running time
until completion is T/p.

• Hashing n elements into a table of size n. The
location of each element is distributed uniformly
over the n bins, independent of the location of
the other elements. The occupancy of a bin is the
number of elements that it holds. The probabil-
ity that “the maximal occupancy (over all bins)
is larger than log(n)” goes to zero as n goes to
infinity.

• The power of two: One very effective method
for reducing the maximal occupancy is to use
two hash functions instead of one. To add a
new element to the table both locations are
checked and the new element is added to the
location with smaller occupancy. The probabil-
ity that “the maximal occupancy is larger than
log log(n)” goes to zero as n goes to infinity.

• Min-Hash: Here we are concerned with com-
paring document. We view each document as
a set of words. The Jaccard similarity between
two documents A,B, is defined as

S(A,B) =
|A ∩B|
|A ∪B|

Where A denotes the set words in the document
A (without repetitions) and |A| is the number of
elements in that set.

The min-hash method associates with each doc-
ument a short “signature” so that the similar-
ity between any two documents can be approxi-
mated efficiently from their signatures alone.

The min-hash signature consists of k integers
from a very large range (much larger that the
set of possible words). Each of the k numbers
is computed by using an independent hash func-
tion hi. Each word w is mapped to it’s hash
value hi(w). A document is then mapped to the
minimum of the hash values of it’s words. This
gives the ith min-hash value for the document.

The probability that the ith min-hash values of
two documents A,B match is equal to the sim-
ilarity S(A,B). Thus the random variables Xi

which are 1 for match, 0 for no-match, are IID
binary RV with expected value S(A,B). Using
this fact we can compute the minimal value of k
required to reach a specified level of accuracy in
estimating S(A,B).

• Bloom filters: A method for determining
whether a given item has been observed in the



past. The method consists of a binary vector T
of length m which is initialized to all zeros, and
k hash functions that map items into the range
1, . . . ,m. An item x is mapped to the k values
h1(x), . . . , hk(x). The corresponding entries in T
are checked, if all of these entries are 1 the item
is declared to have been observed in the past,
then all of the entries are set to 1.

• Bloom filters do not make false negative mistakes
- declaring an item to be new when it is not.

• Suppose we have already entered n elements into
the filter, The probability of a false positive
(declaring the n + 1th item as not new when in

fact it is new) is p ≈
(
1− e−kn/m

)k
.

• The optimal choice of k for given values of m,n
is k = m

n ln 2

• If we want to have probability at most p of a false
positive, we are given the value of n and use the
optimal choice for k then the minimal table size
we need is: m ≥ (n ln(1/p))/(ln 2)2


